Archive | 2021

Multi-scale Design, Prototyping and Validation Testing of a Composite Anti Roll Bar

 
 
 
 
 

Abstract


Lightweighting in automotive has already been a key research area for decades, and more recently this research driver has been augmented with electrification and sustainability of new mobility solutions. This contribution focuses on the redesign of a passenger vehicle anti-roll bar from the traditional steel design into a braided glass fiber reinforced composite solution. This work focuses on the functional, central part of the anti-roll bar, targeting a significant weight reduction and sustainability improvement. In terms of design and engineering using finite element methods, a multiscale approach of the composite design has been considered. At microscale the braid unit cell and at macro scale a component were modelled. For the microscale of the braided structure, a selection of design variables has been scrutinized, notably the effect of the braiding angle on the shear stiffness. On the macro scale, finite element modelling is adopted to relate the overall performance to the composite structure and part dimensioning. Additionally, high-potential designs have been prototyped by overbraiding and Vacuum-Assisted Resin Infusion processes. Functional performance testing on the prototypes evaluates the adopted simulation strategies and validates the design.

Volume None
Pages None
DOI 10.25518/ESAFORM21.2632
Language English
Journal None

Full Text