Archive | 2021

Thermal design methodology to hybrid manufacturing process of high performance thermoplastics composites

 
 
 
 
 

Abstract


Thermal analysis plays a key role in the design of hybrid manufacturing processes of High-Performance Thermoplastic Composites (HP-TPC) parts. Indeed, an inadequate temperature distribution, during the transformation of these materials, could not only lead to mechanical and surface defects but also to inefficient energy consumption. These problems become difficult to avoid with the interaction of different materials within the part, and also with the influence of subsequent stages on the process. To overcome this challenge, the methodology proposed in this work aims to determine the spatial and temporal distribution of the heat sources that must be applied at each sequential stage of a process to reach a thermal objective within the part. The methodology is based on the concept of conformal cooling [1]. A surface enveloping the part is created [2]. Once a computational model is set up, the optimization problem is treated as an inverse problem subjected to constraints that depend on the process response in terms of temperature cycles. Thus, it requires the calculation of the direct problem, the adjoint-state solution, and the development of the sensitivity equations to implement a first-order gradient-based algorithm. As an application example, a thermo-stamping of HP-TPC with a metal insert followed by an over-molding process has been chosen because of the different stages and materials involved. The first results show a reduction of temperature gradients on the part surface at each stage while arriving at the established temperature level. Further analysis will include a constraint problem taking into account adhesion and/or energy criteria.

Volume None
Pages None
DOI 10.25518/ESAFORM21.3677
Language English
Journal None

Full Text