Archive | 2021

A Cost-Effective Method for Bulge Prediction in Two Point Incremental Forming

 
 
 
 
 

Abstract


Accurate prediction of the defects occurring in incrementally formed parts has been gaining attention in recent years. This interest is because accurate predictions can overcome the limitation in the advancement of incremental forming in industrial-scale implementation, which has been held back by the increase in the cost and development time due to trial and error methods. The finite element method has been widely utilized to predict the defects in the formed part, e.g., bulge. However, the computation time of running these models and their mesh-size dependency in predicting the forming defects represent barriers in adopting these models as part of CAD-FEM-CAE platforms. Thus, robust analytical and data-driven algorithms must be developed for a cost-effective design of complex parts. In this paper, a new analytical model is proposed to predict the bulge location and geometry in two point incremental forming of an aerospace aluminum alloy AA7075-O for a 67° truncated cone. First, the algorithm calculates the region of interest based on the part geometry. A novel shape function and weighted summation method are then utilized to calculate the amplitude of the instability produced by material accumulation during forming, leading to a bulge on the unformed portion of the sample. It was found that the geometric profile of the part influences the shape function, which is a function created to incorporate the effects of process parameter and boundary condition. The calculated profile in each direction is finalized into one 3-dimensional profile, compared with the experimental results for validation. The proposed model has proven to predict an accurate bulge profile with 95% accuracy comparing with experiments with less than 5% computational cost of FEM modeling.

Volume None
Pages None
DOI 10.25518/ESAFORM21.419
Language English
Journal None

Full Text