Archive | 2021

Another Form of Modified, Highly-Active 6-Phosphofructo-1-Kinase in Cancer Cells

 
 
 
 

Abstract


Enhanced glycolytic flux is a hallmarks of cancer cells. Posttranslational modification of the key regulatory enzyme of glycolysis, 6-Phosphofructo-1- Kinase (Pfk1) might trigger metabolic flux deregulation. In the cancer cells the human 85 kDa muscle type nPfk-M enzyme can be proteolytically cleaved to form highly-active 47 kDa shorter fragments that retain activity but become resistant to feed-back inhibition. In several tumorigenic cell lines, no native 85 kDa liver type nPfk-L isoforms could be either found and only 70 kDa shorter fragments were detected by immune-blotting. To learn more about the cancer-specific modified sfPfk-L enzyme, the truncated human sfPfk-L gene encoding 70 kDa fragments was inserted into the pfk null yeast S.cerevisiae cell. The recombinant modified enzyme showed higher affinity toward the substrate fructose-6-phosphate, reduced sensitivity toward the citrate and ATP inhibition in respect to the recombinant native PFK-L enzyme. Partially purified cancer-specific sfPfk-L fragments lacking the C-portion of the enzyme showed some instability under the diluted conditions in the buffer in respect to the tetrameric native nPfk-L enzyme. Growth characteristics of the yeast transformant encoding short sfPfk-L enzymes were similar to those encoding shorter sfPfk-M enzymes. No growth of the transformant with the sfPfk-L gene was observed on glucose but it grew faster than the transformant with the native human nPfk-L enzyme in a narrow ecological niche with low maltose concentration and 10 mM of ethanol in the medium. Similar to modified 47 kDa sfPfk-M fragments, also the short 70 kDa nPfk- Lfragments might cause deregulation of the glycolytic flux in the yeast and in the cancer cells. In yeast, deregulated metabolic flux unbalances redox potential that results in reduced growth rate. However, the cancer cells beat the redox unbalance by rapid re-oxidation of redundant NADH that results in lactate formation while the growth rate remains high.

Volume 8
Pages 1-7
DOI 10.26420/ANNHEMATOLONCOL.2021.1344
Language English
Journal None

Full Text