Reviews in cardiovascular medicine | 2021

The pathomechanism of human myxomatous valvular degeneration at the mechanical and cellular level.

 
 
 
 
 
 
 

Abstract


The purpose of this study was to explore the pathomechanism of human myxomatous valve degeneration by investigating changes in the phenotype of valvular cells, the metabolism of the extracellular matrix and their mechanical properties. Mitral valve specimens were harvested from patients who had undergone valve replacement, and divided into two groups: patients with a myxomatous mitral valve and a control group. Histological investigation showed that the morphology of the extracellular matrix was looser and less coordinated in myxomatous valves than in controls. α-SMA (α-smooth muscle actin) and Vimentin were positive and DNA (deoxyribonucleic acid) assay of leaflets and expression of SMemb (embryonic smooth muscle myosin heavy chain), MMP-13 (matrix Metalloproteinases-13), MMP-1 mRNA (messenger Ribonucleic Acid) of the myxomatous valves were increased while the hydroxyproline content, expression of TIMP-1 (tissue inhibitor of metalloproteinase-1) mRNA and mechanical properties were decreased compared with controls. Compared to the quiescent interstitial cells in non-myxomatous valves, interstitial cells in myxomatous valves exhibit myofibroblast activation and express excessive levels of matrix metalloproteinases. The balance between MMP/TIMP was disrupted. We conclude that overactivation of VICs (Valvular interstitial cells) and the imbalance of MMP/TIMP could be important features of the pathomechanism of myxomatous mitral valve degeneration.

Volume 22 2
Pages \n 513-519\n
DOI 10.31083/j.rcm2202059
Language English
Journal Reviews in cardiovascular medicine

Full Text