International journal for innovation education and research | 2021

PHYSIOLOGY AND MORPHOLOGY OF RICE PLANTS WITH SILICON SUPPLEMENTATION AND DIETHOLATE SEED TREATMENT UNDER WATER DEFICIT

 
 
 
 
 

Abstract


Silicon is an enzyme stimulator that promotes signaling for the production of antioxidant, osmoprotective compounds and attenuates interference in photosynthesis in rice plants subjected to water deficit. The aim of this study was to evaluate the possible effects of silicon as a stress reliever in rice plants grown from seeds treated with dietholate under of water deficit conditions. The experimental design was fully randomized with three replicates, 144 experimental units consisting of pots containing 4.4 pounds soil, and a 3x2x2x4 factorial arrangement: three soil water conditions (50% and 100% of soil water retention capacity and water blade of 5.0 cm); two cultivars (IRGA 424 RI and Guri INTA CL); two sources of Si (sodium and potassium metasilicate); and four Si rates (0; 4.0; 8.0 and 16 g L-1). Silicon boosted stomatal density; induced an increase in the maximum photochemical efficiency of photosystem II (PSII) under both water deficit and optimal conditions, boosting photosynthesis; and increased effective quantum yield of PSII and levels of total dry mass. Thus, silicon attenuated the effects of water deficit in plants grown from seeds treated with dietholate.

Volume 9
Pages 561-575
DOI 10.31686/IJIER.VOL9.ISS5.3126
Language English
Journal International journal for innovation education and research

Full Text