Journal of dairy science | 2019

Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow.

 
 
 
 
 
 

Abstract


The stratified squamous ruminal epithelium is the main site for absorption of key nutrients (e.g., short-chain fatty acids; SCFA) and electrolytes (e.g., sodium and magnesium). The absorptive function has to be highly selective to prevent simultaneous entry of microbes and toxins from the rumen into the blood. As such, epithelial absorption is primarily transcellular, whereas the paracellular pathway appears rather tightly sealed. A network of tight junction (claudin-1, claudin-4, and occludin) and tight junction-associated proteins (e.g., zonula occludens) accomplishes the latter. When microbial fermentation activity is high such as with highly fermentable diets, rumen epithelial functions are often challenged by acidity, high osmolarity, toxins (e.g., endotoxin and histamine), and immune mediators (inflammatory mediators and cytokines) released during local and systemic inflammation. Epithelial damage by low pH in combination with high luminal SCFA concentrations is not immediately reversible and may initially aggravate upon return to physiological pH. In contrast, barrier opening upon hyperosmolarity is acutely transient. The initial insults set by luminal acidity and SCFA and the increasing concentrations of microbial-associated molecular patterns such as lipopolysaccharides are key factors that trigger inflammation not only in the rumen but also in the hindgut (cecum and colon), which reach out to the liver and other organs, causing systemic inflammation. Low feed intake during parturition, transportation, heat stress, or disease is the second most relevant challenge for the ruminal epithelial barrier. The barrier opening is usually only transient and quickly restored upon refeeding. Due to a rapid, dose-dependent, and prolonged decrease in absorption capacity for SCFA, however, any feed restriction increases the odds for postrestriction subacute ruminal acidosis. Inflammation due to acidosis can be alleviated by supplemental thiamine, yeasts, and plant bioactive (phytogenic) compounds. Butyrate is used in weaning calves to support ruminal barrier development; however, excess butyrate may promote hyperkeratosis, parakeratosis, and epithelial injury in the fully developed rumen of adult cows. Further research is needed to enhance the understanding of the various factors that counteract barrier impairment and help barrier restoration during acidogenic feeding, especially when concurring with unavoidable periods of feed restriction.

Volume 102 2
Pages \n 1866-1882\n
DOI 10.3168/jds.2018-15243
Language English
Journal Journal of dairy science

Full Text