SERIES CHEMISTRY AND TECHNOLOGY | 2021

SYNTHESIS OF CARBON NANOFIBERS BASED ON HUMIC ACID AND POLYACRYONITRILE BY ELECTROSPINNING METHOD

 
 
 
 

Abstract


The article describes a method for obtaining carbon nanofibers (CNFs) based on humic acid from oxidized coal of the Maikuben basin and polycarlonitrile (PAN) by electrospinning in laboratory conditions. The value of the interelectrode voltage was 20-25 kV. The elemental composition was determined and the surface morphology of the studied sample was studied, the type of modification of the carbon fiber was revealed. As a result of energy dispersive X-ray spectroscopy and scanning electron microscopy (SEM), the chemical composition of the initial CNF (C-48.73%) and the diameter of carbon fibers, which ranged from 148.6 nm to 1.36 μm, were found. The processes of oxidation and carbonization of the obtained samples were also carried out. The elemental composition of carbon after oxidation and carbonization was 87.75 and 89.16%, respectively, the diameter of the fibers was 117.5 nm -1.03 microns. The results of Raman scattering of light (RS) of carbonized CNF showed the degree of graphitization - 23.97%, the ratio I (D) / I (G) = 0.7, I (G) / I (D) = 1.4. The resistance of this material was 27 ohms. On the basis of SEM patterns of CNFs based on humic acid and PAN, it was found that the structure of the sample after oxidation and carbonization retains the original fibrous structure. It was also found that the diameter of nanofibers decreases from 1 μm to 117.5 nm, which may be associated with the release of volatile and heterogeneous components of the original product and the formation of a more structural thin porous filament.

Volume None
Pages None
DOI 10.32014/2021.2518-1491.59
Language English
Journal SERIES CHEMISTRY AND TECHNOLOGY

Full Text