Journal of Intelligent and Fuzzy Systems | 2021

Software test data generation technology based on polymorphic particle swarm evolutionary algorithm

 
 

Abstract


Combinatorial testing is a statute-based software testing method that aims to select a small number of valid test cases from a large combinatorial space of software under test to generate a set of test cases with high coverage and strong error debunking ability. However, combinatorial test case generation is an NP-hard problem that requires solving the combinatorial problem in polynomial time, so a meta-heuristic search algorithm is needed to solve the problem. Compared with other meta-heuristic search algorithms, the particle swarm algorithm is more competitive in terms of coverage table generation scale and execution time. In this paper, we systematically review and summarize the existing research results on generating combinatorial test case sets using particle swarm algorithm, and propose a combinatorial test case generation method that can handle arbitrary coverage strengths by combining the improved one-test-at-a-time strategy and the adaptive particle swarm algorithm for the variable strength combinatorial test problem and the parameter selection problem of the particle swarm algorithm. To address the parameter configuration problem of the particle swarm algorithm, the four parameters of inertia weight, learning factor, population size and iteration number are reasonably set, which makes the particle swarm algorithm more suitable for the generation of coverage tables. For the inertia weights.

Volume None
Pages 1-13
DOI 10.3233/JIFS-189811
Language English
Journal Journal of Intelligent and Fuzzy Systems

Full Text