J. Intell. Fuzzy Syst. | 2021

Near-optimal energy-aware approach through INSTANT-OFF and NEVER-OFF clustering by fuzzy logic for wireless sensor networks

 
 
 

Abstract


Wireless Sensor Networks (WSNs) consist of various low-cost devices with limited battery power for surveillance of certain vicinity. The main concern was to prolong the network lifetime to save energy. The heterogeneous nodes are deployed in the given setting divided into two INSTANT-OFF and NEVER-OFF states. Then each one is further subdivided by a Fuzzy Inference System (FIS). The INSTANT-OFF (Good, Better, and Best) has three states active, idle, sleep, and always worked as Cluster Members (CMs) to sense the physical environment. The NEVER-OFF (Good, Better, and Best) has active and idle states. The first two most optimum NEVER-OFF selected as Cluster Head (CH) and Data Collector (DC), and the remaining belonged to CMs. The cluster boundary was defined by parameter Distance from Base Station (DisBS) to meet the unequal clustering approach. The energy consumes during sensing, processing, and transmission phases by its appropriate nodes. The CMs worked reactively and saved energy by idle and sleep states, while the CH and DC worked in a proactive mode and saved energy in an idle state. The sensing job was done by CMs that consumed a minor amount of energy and transmitted packets of 200 bits length to DC. The DC received packets of 200 bits length from CMs and aggregated them into 6400 bits length packets, then delivered them to CH. The reactive and proactive mechanisms saved the energy as 85.1033% in 2000 rounds; increased lifetime up to 774 rounds, re-clustering setup took place after 1912 rounds, and enhanced the throughput as 100% and latency time 0.001123 by experiment evaluation. The result shows that most energy consumption job were communicated with BS performed by CH hop by hop through other CH. The unequal clustering approach maintained the consumption of energy levels throughout WSNs processing.

Volume 41
Pages 83-98
DOI 10.3233/JIFS-200382
Language English
Journal J. Intell. Fuzzy Syst.

Full Text