Open Information and Computer Integrated Technologies | 2021

ДЕТОНАЦІЙНО-ГАЗОВЕ ЗМІЦНЕННЯ ДЕТАЛЕЙ ДВИГУНІВ ВНУТРІШНЬОГО ЗГОРАННЯ

 
 
 
 

Abstract


The paper deals with improving the reliability and durability of parts of the cylinder-piston group of internal combustion engines. Strengthening of machine parts is possible through the use of special production processes. Modern materials and coatings must be able to meet high operating temperatures and loads.Chrome plating, boriding and ion-plasma spraying do not meet the established quality requirements. The aluminum piston suffers damage in the head area. This manifests itself in the accumulation of cracks, channels, and traces of alloy washout. In addition, due to heating, the strength of the aluminum alloy becomes worse more than 2 times.It is proposed to create and use a coating that would withstand operating temperatures of more than 2000°C, as well as shock-pulsating loads. A detonation-gas spraying method is proposed. It is characterized by the versatility of materials and can be applied to polymers and to refractory ceramics, as well as to any metals and alloys.The deposited particles have high kinetic energy. The coating is characterized by high strength, which reaches 180 ... 200 MPa, hardness HRCe 60, and minimal cracks. The temperature effect during spraying on the workpiece is negligible. A sequence of preparatory operations is proposed. The piston and glow ring on the UN-102 detonation-gas installation were to be strengthened. A manipulator was used that uses the energy of the installation shot.The resulting surfaces are characterized by a regular macrostructure (waviness). A nickel-aluminum alloy was applied. Coating thickness was about 150 ... 270 microns, hardness was of HV 550, adhesion to the base eas of 94 ... 100 MPa. The results of studies on the parts of the cylinder-piston group showed a decrease in operating temperatures due to the running-in of the coating and high-quality sealing of the combustion chamber.The durability of the rings is 1.6·106…2.3·106, which indicates a significant increase in fatigue resistance and service life. The proposed technology is suitable and recommended for implementation in mass production

Volume None
Pages None
DOI 10.32620/oikit.2021.91.04
Language English
Journal Open Information and Computer Integrated Technologies

Full Text