Sir Syed University Research Journal of Engineering & Technology | 2021

Low latency Montgomery multiplier for cryptographic applications

 
 
 
 

Abstract


In this modern era, data protection is very important. To achieve this, the data must be secured using either public-key or private-key cryptography (PKC). PKC eliminates the need of sharing key at the beginning of communication. PKC systems such as ECC and RSA is implemented for different security services such as key exchange between sender, receiver and key distribution between different network nodes and authentication protocols. PKC is based on computationally intensive finite field arithmetic operations. In the PKC schemes, modular multiplication (MM) is the most critical operation. Usually, this operation is performed by integer multiplication (IM) followed by a reduction modulo M. However, the reduction step involves a long division operation that is expensive in terms of area, time and resources. Montgomery multiplication algorithm facilitates faster MM operation without the division operation. In this paper, low latency hardware implementation of the Montgomery multiplier is proposed. Many interesting and novel optimization strategies are adopted in the proposed design. The proposed Montgomery multiplier is based on school-book multiplier, Karatsuba-Ofman algorithm and fast adders techniques. The Karatsuba-Ofman algorithm and school-book multiplier recommends cutting down the operands into smaller chunks while adders facilitate fast addition for large size operands. The proposed design is simulated, synthesized and implemented using Xilinx ISE Design Suite by targeting different Xilinx FPGA devices for different bit sizes (64-1024). The proposed design is evaluated on the basis of computational time, area consumption, and throughput. The implementation results show that the proposed design can easily outperform the state of the art

Volume None
Pages None
DOI 10.33317/SSURJ.213
Language English
Journal Sir Syed University Research Journal of Engineering & Technology

Full Text