Archive | 2021

Optimization of Spectral Wavelets for Persistence-Based Graph Classification

 
 

Abstract


A graph s spectral wavelet signature determines a filtration, and consequently an associated set of extended persistence diagrams. We propose a framework that optimizes the choice of wavelet for a dataset of graphs, such that their associated persistence diagrams capture features of the graphs that are best suited to a given data science problem. Since the spectral wavelet signature of a graph is derived from its Laplacian, our framework encodes geometric properties of graphs in their associated persistence diagrams and can be applied to graphs without a priori node attributes. We apply our framework to graph classification problems and obtain performances competitive with other persistence-based architectures. To provide the underlying theoretical foundations, we extend the differentiability result for ordinary persistent homology to extended persistent homology.

Volume 7
Pages None
DOI 10.3389/fams.2021.651467
Language English
Journal None

Full Text