Frontiers in Chemistry | 2021

Self-Assembled H-Bonding Superstructures for Alkali Cation and Proton Transport

 
 
 
 

Abstract


Transmembrane protein channels are of significant importance for the design of biomimetic artificial ion channels. Regarding the transport principles, they may be constructed from amphiphilic compounds undergoing self-assembly that synergistically generate directional superstructures across bilayer membranes. Particularly interesting, these alignments may impose an artificial pore structure that may control the ionic conduction and translocate water and ions sharing one pathway across the cell membrane. Herein, we report that the imidazole and 3-amino-triazole amphiphiles self-assemble via multiple H-bonding to form stable artificial networks within lipid bilayers. The alignment of supramolecular assemblies influences the conduction of ions, envisioned to diffuse along the hydrophilic pathways. Compounds 1-8 present subtle variations on the ion transport activities, depending the structure of hydrophilic head and hydrophobic components. Fluorinated compounds 3, 4 and 7, 8 outperform the corresponding non-fluorinated counterparts 1, 2 and 5, 6. Under the same conditions, the R enantiomers present a higher activity vs. the S enantiomers. The present systems associating supramolecular self-assembly with ion-transport behaviors may represent very promising unexplored alternatives for ion-transport along with their transient superstructures within bilayer membranes, paralleling to that of biology.

Volume 9
Pages None
DOI 10.3389/fchem.2021.678962
Language English
Journal Frontiers in Chemistry

Full Text