Archive | 2021

Editorial: Advances in the Structural Elucidation and Utilization of Lignins

 
 

Abstract


As one of the most abundant plant-derived aromatic resources on the planet, lignin has drawn increasing attention in the past few decades. Although remarkable progress has been made in lignin structural elucidation and utilization in recent years, lignin valorization remains themost changing topic due to the complexity and inherent heterogeneity of lignin. As an irregular and non-repeated polymer, lignin has long been recognized as the major recalcitrant that hinders the utilization of cellulose. Normally, native lignin is a highly complex natural polymer formed primarily from three typical monolignol precursors, including p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, that differ in the methoxyl degree of the aromatic ring via a combinatorial radical coupling process. Themonoligniols are then displayed as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units, so called lignin structural units, that linked by several types of C–OandC–C linkages, including β–O–4, β–5, β–β, 5–5, β–1, and 4–O–5 linkages formed during lignin biosynthesis (Figure 1). Among these linkages, β–O–4 alkyl aryl ethers, accounting for 50–80% of the total linkages in native lignins, are themost predominant interunit linkages in lignin polymer. However, selective fractionation of biomass into different constituents (i.e., carbohydrates and lignin) will cause significant structural changes due to degradation and condensation reactions. The resultant condensed lignin increases the difficulty for its valorization. Therefore, efficient fractionation and characterization are two essential prerequisites of valorizing lignin. Understanding reaction mechanisms involved during lignin isolation and revealing the structure of lignin are crucial for development of new methods for lignin fractionation and valorization, especially for the full valorization of lignocellulosic biomass. The topic “Advances in the structural elucidation and utilization of lignins” covers isolation, characterization and utilization of lignin. Here we heartily acknowledge all the contributors for their amazing works on this topic. Following are the highlights drawn from the contributions to this special topic. Understanding the structural changes during lignin isolation is important for optimizing the separation or pretreatment processes. Zhang et al. investigated the structural changes of lignin macromolecules of balsa wood during the growth stages by using double enzymatic lignin (DEL) that was isolated from balsa grown for different lengths of time. They found that the balsa lignin was a typical hardwood lignin overwhelmingly composed of C–O bonds (i.e., β–O–4 linkages, 66.33–68.81/100Ar) and elevated with increasing tree-age, which is beneficial for the production of aromatic chemicals from lignin depolymerization. Li et al. reported the structural features and antioxidant performance of lignin fractionated from industrial furfural residue by an alkaline cooking process. They found that such lignin has appropriate radical scavenging capability and could be a promising antioxidant. Wang et al. examined the structural transformation during deep eutectic solvent (DES) treatments of enzymatic mild acidolysis lignin (EMAL) and a series of β–O–4 lignin model compounds. They demonstrated that β–O–4 linkages, existing in either real lignin or model compounds, could be cleaved by DES (ChCl/LA). The cleavage of β–O–4 linkages of EMAL led to the decrease of molecular weights and the rise of hydroxyl groups, which would be beneficial for developing an efficient fractionation process. Hong et al. investigated the structural changes of alkali lignin under choline chloride/ formic acid (ChCl/FA) DES pretreatment, and revealed the lignin structural transformation during the DES Edited and reviewed by: Uw Schröder, Technische Universitat Braunschweig, Germany

Volume 9
Pages None
DOI 10.3389/fenrg.2021.724825
Language English
Journal None

Full Text