Frontiers in Sports and Active Living | 2021

Variability in the Center of Mass State During Initiation of Accurate Forward Step Aimed at Targets of Different Sizes

 
 

Abstract


Motor control for forward step initiation begins with anticipatory postural adjustments (APAs). During APAs, the central nervous system controls the center of pressure (CoP) to generate an appropriate center of mass (CoM) position and velocity for various task requirements. In this study, we investigated the effect of required stepping accuracy on the CoM and CoP parameters during APA for a step initiation task. Sixteen healthy young participants stepped forward onto the targets on the ground as soon as and as fast as possible in response to visual stimuli. Two target sizes (small: 2 cm square and large: 10 cm square) and two target distances (short: 20% and long: 40% of the body height) were tested. CoP displacement during the APA and the CoM position, velocity, and extrapolated CoM at the timing of the takeoff of the lead leg were compared among the conditions. In the small condition, comparing with the large condition, the CoM position was set closer to the stance limb side during the APA, which was confirmed by the location of the extrapolated center of mass at the instance of the takeoff of the lead leg [small: 0.09 ± 0.01 m, large: 0.06 ± 0.01 m, mean and standard deviation, F(1, 15) = 96.46, p < 0.001, η2 = 0.87]. The variability in the mediolateral extrapolated center of mass location was smaller in the small target condition than large target condition when the target distance was long [small: 0.010 ± 0.002 m, large: 0.013 ± 0.004 m, t(15) = 3.8, p = 0.002, d = 0.96]. These findings showed that in the step initiation task, the CoM state and its variability were task-relevantly determined during the APA in accordance with the required stepping accuracy.

Volume 3
Pages None
DOI 10.3389/fspor.2021.691307
Language English
Journal Frontiers in Sports and Active Living

Full Text