Applied Sciences | 2021

A Novel Thermostable Keratinase from Deinococcus geothermalis with Potential Application in Feather Degradation

 
 
 
 
 
 
 
 
 
 
 

Abstract


Keratinase can specifically attack disulfide bridges in keratin to convert them from complex to simplified forms. Keratinase thermal stability has drawn attention to various biotechnological industries. In this study, a keratinase DgeKer was identified from a slightly thermophilic species, D. geothermalis. The in silico analysis showed that DgeKer is composed of signal peptide, N-terminal propeptide, mature domain, and C-terminal extension. DgeKer and its C-terminal extension-truncated enzyme (DgeKer-C) were cloned and expressed in E. coli. The purified DgeKer and DgeKer-C showed maximum activity at 70 °C and pH 9–The thermal stability assay (60 °C) showed that the half-life value of DgeKer and DgeKer-C were 103.45 min and 169.10 min, respectively. DgeKer and DgeKer-C were stable at the range of pH from 9 to 11 and showed good tolerance to some metal ions, surfactants and organic solvent. Furthermore, DgeKer could degrade feathers at 70 °C for 60 min. However, the medium became turbid with obvious softening of barbules after being treated with DgeKer-C, which might be due to C-terminal extension. In summary, a thermostable keratinase DgeKer with high efficiency degradation of feathers may have great potential in industry.

Volume 11
Pages 3136
DOI 10.3390/APP11073136
Language English
Journal Applied Sciences

Full Text