Applied Sciences | 2021

Are Nano TiO2 Inclusions Improving Biocompatibility of Photocurable Polydimethylsiloxane for Maxillofacial Prosthesis Manufacturing?

 
 
 
 
 
 

Abstract


(1) Background: The development of a biocompatible material for direct additive manufacturing of maxillofacial extraoral prosthesis is still a challenging task. The aim of the present study was to obtain a photocurable PDMS, with nano TiO2 inclusions, for directly 3D printing of extraoral, maxillofacial prosthesis. The biocompatibility of the newly obtained nanocomposite was also investigated; (2) Methods: 2.5% (m/m) titania nanoparticles (TiO2) oxide anatase and a photoinitiator, benzophenone (BF) 4.5% were added to commercially available PDMS for maxillofacial soft prostheses manufacturing. The three different samples (PDMS, PDMS-BF and PDMS-BF-TiO2) were assessed by dielectric curing analysis (DEA) based on their viscosities and curing times. In vitro micronucleus test (MNvit) was performed for genotoxicity assessment and three concentrations of each compounds (2 mg/L, 4 mg/L and 8 mg/L) were tested in duplicate and compared to a control; (3) Results: The nanocomposite PDMS-BP-TiO2 was fully reticulated within a few minutes under UV radiation, according to the dielectric analysis. PDMS-BF-TiO2 nanocomposite showed the lowest degree of cyto- and genotoxicity; (4) Conclusions: In the limits of the present study, the proposed ex situ preparation of a PDMS-BP-TiO2 offers an easy, simple, and promising technique that could be successfully used for 3D printing medical applications.

Volume 11
Pages 3777
DOI 10.3390/APP11093777
Language English
Journal Applied Sciences

Full Text