Applied Sciences | 2021

Study of the Dependence of Solar Radiation Regarding Design Variables in Photovoltaic Solar Installations with Optimal Dual-Axis Tracking

 
 
 
 

Abstract


Solar tracking is an efficient strategy to increase the radiative capture of photovoltaic col‐ lectors. Within the multiple efforts made in recent decades to improve the production of these facil‐ ities, various works have studied solutions to optimize the number of rotation axes (single or dual rotation axes), the degree of collector coverage, the distances between trackers, the geometric ar‐ rangement of trackers or the minimization of shading between collectors. However, although in this type of installation it is common to find collectors with geometric shapes other than rectangles, no studies on the influence of the shape of the collectors on the radiative incidence are found in the literature. In this connection, the present work systematically addresses the study of incident solar radiation in photovoltaic installations with dual‐axis trackers with collectors of different geometric shapes. By means of the exhaustive study, the conclusion is drawn that, for dual‐axis photovoltaic installations with an optimal tracking strategy, the main variables that influence the annual radia‐ tive incidence are the spacing between collectors, the coverage ratio (GCR), and the collector surface, while the type of arrangement of collectors and the shape of these do not show predictive values.

Volume 11
Pages 3917
DOI 10.3390/APP11093917
Language English
Journal Applied Sciences

Full Text