Atmosphere | 2021

Effects of Densification on Urban Microclimate—A Case Study for the City of Vienna

 
 
 
 
 
 

Abstract


Climate adaptation, mitigation, and protecting strategies are becoming even more important as climate change is intensifying. The impacts of climate change are especially tangible in dense urban areas due to the inherent characteristics of urban structure and materiality. To assess impacts of densification on urban climate and potential adaptation strategies a densely populated Viennese district was modeled as a typical sample area for the city of Vienna. The case study analyzed the large-scale densification potential and its potential effects on microclimate, air flow, comfort, and energy demand by developing 3D models of the area showing the base case and densification scenarios. Three methods were deployed to assess the impact of urban densification: Micro-climate analysis (1) explored urban heat island phenomena, wind pattern analysis (2) investigated ventilation and wind comfort at street level, and energy and indoor climate comfort analysis (3) compared construction types and greening scenarios and analyzed their impact on the energy demand and indoor temperatures. Densification has negative impacts on urban microclimates because of reducing wind speeds and thus weakening ventilation of street canyons, as well as accelerating heat island effects and associated impact on the buildings. However, densification also has daytime cooling effects because of larger shaded areas. On buildings, densification may have negative effects especially in the new upper, sun-exposed floors. Construction material has less impact than glazing area and rooftop greening. Regarding adaptation to climate change, the impacts of street greening, green facades, and green roofs were simulated: The 24-h average mean radiant temperature (MRT) at street level can be reduced by up to 15 K during daytime. At night there is only a slight reduction by a few tenths of 1 K MRT. Green facades have a similar effect on MRT reduction, while green roofs show only a slight reduction by a few tenths of 1 K MRT on street level. The results show that if appropriate measures were applied, negative effects of densification could be reduced, and positive effects could be achieved.

Volume 12
Pages 511
DOI 10.3390/ATMOS12040511
Language English
Journal Atmosphere

Full Text