Catalysts | 2019

Degradation of Sulfamethoxazole Using Iron-Doped Titania and Simulated Solar Radiation

 
 
 
 
 

Abstract


This work examined the photocatalytic destruction of sulfamethoxazole (SMX), a widely used antibiotic, under simulated solar radiation using iron-doped titanium dioxide as the photocatalyst. Amongst the various iron/titania ratios examined (in the range 0%–2%), the catalyst at 0.04% Fe/TiO2 molar ratio exhibited the highest photocatalytic efficiency. The reaction rate followed pseudo-first-order kinetics, where the apparent kinetic constant was reduced as the initial concentration of SMX or humic acid increased. The photodecomposition of SMX was favored in natural pH but retarded at alkaline conditions. Unexpectedly, the presence of bicarbonates (in the range of 0.125–2 g/L) improved the removal of SMX, however, experiments conducted in real environmental matrices showed that process efficiency decreased as the complexity of the water matrix increased. The presence of sodium persulfate as an electron acceptor enhanced the reaction rate. However, only a small synergy was observed between the two individual processes. On the contrary, the addition of tert-butanol, a well-known hydroxyl radical scavenger, hindered the reaction, indicating the significant contribution of these radicals to the photocatalytic degradation of SMX. The photocatalyst retained half of its initial activity after five successive experiments.

Volume 9
Pages 612
DOI 10.3390/CATAL9070612
Language English
Journal Catalysts

Full Text