Chemosensors | 2021

The Monitoring of Black-Odor River by Electronic Nose with Chemometrics for pH, COD, TN, and TP

 
 
 
 
 

Abstract


Black-odor rivers are polluted urban rivers that often are black in color and emit a foul odor. They are a severe problem in aquatic systems because they can negatively impact the living conditions of residents and the functioning of ecosystems and local economies. Therefore, it is crucial to identify ways to mitigate the water quality parameters that characterize black-odor rivers. In this study, we tested the efficacy of an electronic nose (E-nose), which was inexpensive, fast, and easy to operate, for qualitative recognition analysis and quantitative parameter prediction of samples collected from the Yueliang River in Huzhou City. The E-nose sensors were cross-sensitive to the volatile compounds in black-odor water. The device recognized the samples from different river sites with 100% accuracy based on linear discriminant analysis. For water quality parameter predictions, partial least squares regression models based on E-nose signals were established, and the coefficients between the actual water quality parameters (pH, chemical oxygen demand, total nitrogen content, and total phosphorous content) and the predicted values were very high (R2 > 0.90) both in the training and testing sets. These results indicate that E-nose technology can be a fast, easy-to-build, and cost-effective detection system for black-odor river monitoring.

Volume None
Pages None
DOI 10.3390/CHEMOSENSORS9070168
Language English
Journal Chemosensors

Full Text