Electronics | 2021

An Extended Semantic Interoperability Model for Distributed Electronic Health Record Based on Fuzzy Ontology Semantics

 
 
 
 
 

Abstract


Semantic interoperability of distributed electronic health record (EHR) systems is a crucial problem for querying EHR and machine learning projects. The main contribution of this paper is to propose and implement a fuzzy ontology-based semantic interoperability framework for distributed EHR systems. First, a separate standard ontology is created for each input source. Second, a unified ontology is created that merges the previously created ontologies. However, this crisp ontology is not able to answer vague or uncertain queries. We thirdly extend the integrated crisp ontology into a fuzzy ontology by using a standard methodology and fuzzy logic to handle this limitation. The used dataset includes identified data of 100 patients. The resulting fuzzy ontology includes 27 class, 58 properties, 43 fuzzy data types, 451 instances, 8376 axioms, 5232 logical axioms, 1216 declarative axioms, 113 annotation axioms, and 3204 data property assertions. The resulting ontology is tested using real data from the MIMIC-III intensive care unit dataset and real archetypes from openEHR. This fuzzy ontology-based system helps physicians accurately query any required data about patients from distributed locations using near-natural language queries. Domain specialists validated the accuracy and correctness of the obtained results.

Volume None
Pages None
DOI 10.3390/ELECTRONICS10141733
Language English
Journal Electronics

Full Text