Energies | 2019

MPC with Constant Switching Frequency for Inverter-Based Distributed Generations in Microgrid Using Gradient Descent

 
 
 

Abstract


Variable switching frequency in the finite control set model predictive control (FCS-MPC) method causes a negative impact on the converter efficiency and the design of the output filters. Several studies have addressed the problem, but they are either complicated or require heavy computation. This study proposes a new model predictive control (MPC) method with constant switching frequency, which is simple to implement and needs only a small computation time. The proposed MPC method is based on the gradient descent (GD) method to find the optimal voltage vector. Since the cost function of the MPC method is represented in the strongly convex function, the optimal voltage vector could be found quickly by using the GD method, which reduces the computation time of the MPC method. The design of the proposed MPC method based on GD (GD-MPC) is shown in this study. The feasibility of the proposed GD-MPC is evaluated in the real-time simulation using OPAL-RT technologies. The performance of the proposed method in the case of single inverter operation or parallel inverter operation is shown. A comparison study on the proposed GD-MPC and the MPC with the concept of the virtual state vector (VSV-MPC) is presented to demonstrate the effectiveness of the proposed predictive control. Real-time simulation results show that the proposed GD-MPC method performs better with a low total harmonic distortion (THD) value of output current and short computation time, compared to the VSV-MPC method.

Volume 12
Pages 1156
DOI 10.3390/EN12061156
Language English
Journal Energies

Full Text