Energies | 2021

Environmentally Constrained Optimal Dispatch Method for Combined Cooling, Heating, and Power Systems Using Two-Stage Optimization

 
 
 

Abstract


The reliance on coal-fired power generation has gradually reduced with the growing interest in the environment and safety, and the environmental effects of power generation are now being considered. However, it can be difficult to provide stable power to end-users while minimizing environmental pollution by replacing coal-fired systems with combined cooling, heat, and power (CCHP) systems that use natural gas, because CCHP systems have various power output vulnerabilities. Therefore, purchasing power from external electric grids is essential in areas where CCHP systems are built; hence, optimal CCHP controls should also consider energy purchased from external grids. This study proposes a two-stage algorithm to optimally control CCHP systems. In Stage One, the optimal energy mix using the Lagrange multiplier method for state-wide grids from which CCHP systems purchase deficient electricity was calculated. In Stage Two, the purchased volumes from these grids were used as inputs to the proposed optimization algorithm to optimize CCHP systems suitable for metropolitan areas. We used case studies to identify the accurate energy efficiency, costs, and minimal emissions. We chose the Atlanta area to analyze the CCHP system’s impact on energy efficiency, cost variation, and emission savings. Then, we calculated an energy mix suitable for the region for each simulation period. The case study results confirm that deploying an optimized CCHP system can reduce purchased volumes from the grid while reducing total emissions. We also analyzed the impact of the CCHP system on emissions and cost savings.

Volume None
Pages None
DOI 10.3390/EN14144135
Language English
Journal Energies

Full Text