Energies | 2021

Capillary Desaturation Tendency of Hybrid Engineered Water-Based Chemical Enhanced Oil Recovery Methods

 
 
 
 

Abstract


Several studies have shown the synergetic benefits of combining various chemical enhanced oil recovery (CEOR) methods with engineered waterflooding (EWF) in both sandstones and carbonate formations. This paper compares the capillary desaturation tendency of various hybrid combinations of engineered water (EW) and CEOR methods with their conventional counterparts. Several coreflood experiments were conducted, including EW-surfactant flooding (EWSF), EW-polymer flooding (EWPF), EW-alkali-surfactant flooding (EWASF), EW-surfactant-polymer flooding (EWSPF), and EW-alkali-surfactant-polymer flooding (EWASP). Capillary numbers (Nc) and corresponding residual oil saturation (Sor) for each scenario are compared with capillary desaturation curves (CDC) of conventional CEOR methods from the literature. The results indicate that hybrid EW–CEOR methods have higher capillary desaturation tendency compared to conventional methods. The capillary numbers obtained by standalone polymer flooding (PF) are usually in the range from 10−6 to 10−5, which are not sufficient to cause a significant reduction in Sor. However, the hybrid EW-polymer flooding approach considerably reduced the Sor for the same Nc values, proving the effectiveness of the investigated method. The hybrid EWASP flooding caused the highest reduction in Sor (23%) against Nc values of 8 × 10−2, while conventional ASP flooding reduced the Sor for relatively higher Nc values (3 × 10−3 to 8 × 10−1). Overall, the hybrid methods are 30–70% more efficient in terms of recovering residual oil, compared to standalone EWF and CEOR methods. This can be attributed to the combination of different mechanisms such as wettability modification by EW, ultralow interfacial tension by alkali and surfactant, reduced surfactant adsorption by alkali addition, and favorable mobility ratio by polymer. Based on the promising results, these hybrid techniques can be effectively implemented to carbonate formations with harsh reservoir conditions such as high salinity and high temperature.

Volume None
Pages None
DOI 10.3390/EN14144368
Language English
Journal Energies

Full Text