Forests | 2021

Development of Mathematical Models for the Estimation of Dendrometric Variables Based on Unmanned Aerial Vehicle Optical Data: A Romanian Case Study

 
 
 
 

Abstract


Research highlights: In this study, the possibility of developing predictive models for both individual trees and forest stands, based on information derived from digital surface models (DSMs), was evaluated. Background and objectives: Unmanned aerial systems (UASs) make it possible to obtain digital images with increased spectral and spatial resolution at a lower cost. Based on the variables extracted by means of the digital representation of surfaces, we aimed at generating mathematical models that would allow the prediction of the main biometric features of both individual trees and forest stands. Materials and methods: Forest stands are characterized by various structures. As such, measurements may address upper-level trees, but most often are oriented towards those belonging to the mean tree category, randomly selected from those identifiable from digital models. In the case of grouped trees, it is the best practice to measure the projected area of the entire canopy. Tree and stand volumes can be determined using models based on features measured in UAS-derived digital models. For the current study, 170-year-old mixed sessile oak stands were examined. Results: Mathematical models were developed based on variables (i.e., crown diameter and tree height) extracted from digital models. In this way, we obtained results characterized by root mean square error (RMSE) values of 18.37% for crown diameter, 10.95% for tree height, and 8.70% for volume. The simplified process allowed for the estimates of the stand volume using crown diameter or diameter at breast height, producing results with RMSE values of 9%. Conclusions: The accuracy of the evaluation of the main biometric features depends on the structural complexity of the studied plots, and on the quality of the DSM. In turn, this leads to the necessity to parametrize the used models in such a manner that can explain the variation induced by the stand structure.

Volume 12
Pages 200
DOI 10.3390/F12020200
Language English
Journal Forests

Full Text