Journal of Marine Science and Engineering | 2019

Numerical Analysis on the Effect of Artificial Ventilated Pipe Diameter on Hydrodynamic Performance of a Surface-Piercing Propeller

 
 
 
 

Abstract


Under the condition of large water immersion, surface-piercing propellers are inclined to be heavy loaded. In order to improve the hydrodynamic performance of the surface-piercing propeller, the installation of a vent pipe in front of a propeller disc is more widely used in the propulsion device of high speed planning crafts. Based on computational fluid dynamics (CFD) method, this paper studied the influence of diverse vent pipe diameters on hydrodynamic performance of the surface-piercing propeller under full water immersion conditions. The numerical results show that, with the increase of vent pipe diameters, the thrust and torque of the surface-piercing propeller decrease after ventilation, and the efficiency of the propeller increases rapidly; the low pressure area near the back root of the blade becomes smaller and smaller gradually; and the peak of periodic vibration of thrust and torque can be effectively reduced. The numerical results demonstrate that the installation of artificial vent pipe effectively improves the hydrodynamic performance of surface piercing propeller in the field of high speed crafts, and the increase of artificial vent pipe diameter plays an active role in the propulsion efficiency of the surface-piercing propeller.

Volume 7
Pages 240
DOI 10.3390/JMSE7080240
Language English
Journal Journal of Marine Science and Engineering

Full Text