Journal of Marine Science and Engineering | 2021

Relationship Between Tree Size, Sediment Mud Content, Oxygen Levels, and Pneumatophore Abundance in the Mangrove Tree Species Avicennia Marina (Forssk.) Vierh

 
 

Abstract


Mangroves are important in protecting and stabilizing coastal zones. Pneumatophores of the mangrove species Avicennia marina can form a large aboveground complex of aerial roots, which are important in supporting mangrove growth in low-oxygen environments. We examined the relationship between mangrove tree height, tree girth, sediment mud content, and oxygen levels with pneumatophore abundance. As sediments with higher mud content have more anaerobic conditions due to their lower porosity, we hypothesized that pneumatophore abundance would be positively correlated with sediment mud content and negatively correlated with sediment oxygen levels. Pneumatophore abundance of A. marina ranged from 14 to 516 per m2 (mean 171.8 ± 0.61 per m2), pneumatophore height from 6.6 to 27.5 cm (14.1 ± 0.86 cm), and maximum pneumatophore diameter from 8.5–12.7 mm (8.5 ± 0.24 mm). Pneumatophore abundance was positively correlated with tree height and tree girth. As hypothesized, pneumatophore abundance was positively correlated with percentage of mud content in sediment and negatively correlated with oxygen percentage. This suggests that mangrove trees can adapt to anaerobic and water-logged conditions by increasing their number of pneumatophores, hence providing greater surface area for gas exchange. In addition, there was a significant effect of mangrove (natural and planted), tidal position, and their interaction. With natural mangrove having higher abundance of pneumatophores compared to the planted mangrove, with the highest number closest to the sea. While pneumatophore abundance did not differ among tidal zones in planted mangrove.

Volume 9
Pages 100
DOI 10.3390/JMSE9010100
Language English
Journal Journal of Marine Science and Engineering

Full Text