Machines | 2021

Development and Application of Fuzzy Proportional-Integral Control Scheme in Pitch Angle Compensation Loop for Wind Turbines

 
 
 
 

Abstract


Wind energy is regarded as one of the oldest energy sources and has played a significant role. As the nature of wind changes continuously, the generated power varies accordingly. Generation of the pitch angle of a wind turbine’s blades is controlled to prevent damage during high wind speed. This paper presents the development and application of a fuzzy proportional integral control scheme combined with traditional proportional control in the dynamic behavior of pitch angle-regulated wind turbine blades. The combined control regulates rotor speed and output power, allowing control of the power while maintaining the desired rotor speed and avoiding equipment overloads. The studied model is a large-scale wind farm of 120 MW in the Gulf El-Zayt region, Red Sea, Egypt. The control system validity is substantiated by studying different cases of wind speed function: ramp, step, random, and extreme wind speed. The results are compared with the traditional combined control. The model is simulated using MATLAB/SIMULINK software. The simulation results proved the effectiveness of fuzzy tuned PI against traditional PI control.

Volume None
Pages None
DOI 10.3390/MACHINES9070135
Language English
Journal Machines

Full Text