Archive | 2021

Extended Hamilton–Jacobi Theory, Symmetries and Integrability by Quadratures

 
 
 

Abstract


In this paper, we study the extended Hamilton–Jacobi Theory in the context of dynamical systems with symmetries. Given an action of a Lie group G on a manifold M and a G-invariant vector field X on M, we construct complete solutions of the Hamilton–Jacobi equation (HJE) related to X (and a given fibration on M). We do that along each open subset U⊆M, such that πU has a manifold structure and πU:U→πU, the restriction to U of the canonical projection π:M→M/G, is a surjective submersion. If XU is not vertical with respect to πU, we show that such complete solutions solve the reconstruction equations related to XU and G, i.e., the equations that enable us to write the integral curves of XU in terms of those of its projection on πU. On the other hand, if XU is vertical, we show that such complete solutions can be used to construct (around some points of U) the integral curves of XU up to quadratures. To do that, we give, for some elements ξ of the Lie algebra g of G, an explicit expression up to quadratures of the exponential curve expξt, different to that appearing in the literature for matrix Lie groups. In the case of compact and of semisimple Lie groups, we show that such expression of expξt is valid for all ξ inside an open dense subset of g.

Volume 9
Pages 1357
DOI 10.3390/MATH9121357
Language English
Journal None

Full Text