Mathematics | 2021

Principal Bundle Structure of Matrix Manifolds

 
 
 

Abstract


In this paper, we introduce a new geometric description of the manifolds of matrices of fixed rank. The starting point is a geometric description of the Grassmann manifold Gr(Rk) of linear subspaces of dimension r<k in Rk, which avoids the use of equivalence classes. The set Gr(Rk) is equipped with an atlas, which provides it with the structure of an analytic manifold modeled on R(k−r)×r. Then, we define an atlas for the set Mr(Rk×r) of full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rk) and typical fibre GLr, the general linear group of invertible matrices in Rk×k. Finally, we define an atlas for the set Mr(Rn×m) of non-full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rn)×Gr(Rm) and typical fibre GLr. The atlas of Mr(Rn×m) is indexed on the manifold itself, which allows a natural definition of a neighbourhood for a given matrix, this neighbourhood being proved to possess the structure of a Lie group. Moreover, the set Mr(Rn×m) equipped with the topology induced by the atlas is proven to be an embedded submanifold of the matrix space Rn×m equipped with the subspace topology. The proposed geometric description then results in a description of the matrix space Rn×m, seen as the union of manifolds Mr(Rn×m), as an analytic manifold equipped with a topology for which the matrix rank is a continuous map.

Volume None
Pages None
DOI 10.3390/MATH9141669
Language English
Journal Mathematics

Full Text