Archive | 2019

Compositional Design of Soft Magnetic High Entropy Alloys by Minimizing Magnetostriction Coefficient in (Fe0.3Co0.5Ni0.2)100−x(Al1/3Si2/3)x System

 
 
 
 
 
 
 
 

Abstract


Developing cost-effective soft magnetic alloys with excellent mechanical properties is very important to energy-saving industries. This study investigated the magnetic and mechanical properties of a series of (Fe0.3Co0.5Ni0.2)100−x(Al1/3Si2/3)x high-entropy alloys (HEAs) (x = 0, 5, 10, 15, and 25) at room temperature. The Fe0.3Co0.5Ni0.2 base alloy composition was chosen since it has very the smallest saturation magnetostriction coefficient. It was found that the (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy maintains a simple face-centered cubic (FCC) solid solution structure in the states of as-cast, cold-rolled, and after annealing at 1000 ◦C. The alloy after annealing exhibits a tensile yield strength of 235 MPa, ultimate tensile strength of 572 MPa, an elongation of 38%, a saturation magnetization (Ms) of 1.49 T, and a coercivity of 96 A/m. The alloy not only demonstrates an optimal combination of soft magnetic and mechanical properties, it also shows advantages of easy fabrication and processing and high thermal stability over silicon steel and amorphous soft magnetic materials. Therefore, the alloy of (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 holds good potential as next-generation soft magnets for wide-range industrial applications.

Volume 9
Pages 382
DOI 10.3390/MET9030382
Language English
Journal None

Full Text