Physics | 2021

Techniques for Background Identification in the Search for Rare Processes with Crystal Scintillators

 
 

Abstract


In astroparticle, nuclear and subnuclear physics, low-counting experiments play an increasingly important role in the investigation of rare processes such as dark matter, double beta decay, some neutrino processes and low-background spectrometry. Extremely low-background features are more and more required to produce detectors and apparata of suitable sensitivity. Over time, a great deal of interest and attention in developing experimental techniques suitable to improve, verify and maintain the radiopurity of these detectors has arisen. In this paper, the characterization of inorganic crystal scintillators (such as, e.g., NaI(Tl), ZnWO4 and CdWO4) using α, β and γ radioactive sources and the main experimental techniques applied in the field to quantitatively identify the radioactive contaminants are highlighted; in particular, we focus on inorganic crystal scintillators, widely used in rare processes investigation, considering their applications at noncryogenic temperatures in the framework of the DAMA experiment activities at the Gran Sasso National Laboratory of the INFN (National Institute for Nuclear Physics, Roma, Italy).

Volume 3
Pages 187-206
DOI 10.3390/PHYSICS3020015
Language English
Journal Physics

Full Text