Archive | 2021

Effect of the Inlet Gas Void Fraction on the Work Performance of the Multiphase Pump at Different Cavitation Stages

 
 
 
 

Abstract


The inlet gas void fraction (IGVF) has a great effect on the power performance of the multiphase pump, and the effect is even greater under the cavitation condition. To reveal the effect of the IGVF on the cavitation evolution and the work performance of the multiphase pump at different cavitation stages, the cavitation flow was calculated numerically for the pump under different inlet gas void fractions (IGVFs) of 0%, 10% and 20%. Meanwhile, the numerical simulation method was verified experimentally. The results showed that the increase of the IGVF could improve the cavitation performance of the multiphase pump and inhibit the increasing rate of the vapor. With the aggravation of the cavitation, the output power of the impeller decreased gradually under different IGVFs. In addition, the variation trend of the output power and the net energy gained by the fluid within each domain were exactly the same. At the same time, the position of better work performance was located in the impeller fore area at the critical and serious cavitation stages, while when the cavitation developed to the fracture cavitation, the position of better work performance moved to the impeller back area. At the fracture cavitation stage, the main work region of the multiphase pump moved from the back area to the fore area of the impeller with the increase of the IGVF. The research results are of great significance in improving the performance of the multiphase pump.

Volume 9
Pages 1006
DOI 10.3390/PR9061006
Language English
Journal None

Full Text