Remote. Sens. | 2021

Autonomous Integrity Monitoring for Relative Navigation of Multiple Unmanned Aerial Vehicles

 

Abstract


Accurate and reliable relative navigation is the prerequisite to guarantee the effectiveness and safety of various multiple Unmanned Aerial Vehicles (UAVs) cooperation tasks, when absolute position information is unavailable or inaccurate. Among the UAV navigation techniques, Global Navigation Satellite System (GNSS) is widely used due to its worldwide coverage and simplicity in relative navigation. However, the observations of GNSS are vulnerable to different kinds of faults arising from transmission degradation, ionospheric scintillations, multipath, spoofing, and many other factors. In an effort to improve the reliability of multi-UAV relative navigation, an autonomous integrity monitoring method is proposed with a fusion of double differenced GNSS pseudoranges and Ultra Wide Band (UWB) ranging units. Specifically, the proposed method is designed to detect and exclude the fault observations effectively through a consistency check algorithm in the relative positioning system of the UAVs. Additionally, the protection level for multi-UAV relative navigation is estimated to evaluate whether the performance meets the formation flight and collision avoidance requirements. Simulated experiments derived from the real data are designed to verify the effectiveness of the proposed method in autonomous integrity monitoring for multi-UAV relative navigation.

Volume 13
Pages 1483
DOI 10.3390/RS13081483
Language English
Journal Remote. Sens.

Full Text