Sustainability | 2021

Characterization of Carbonaceous Deposits on an End-of-Life Engines for Effective Cleaning for Remanufacturing

 
 
 
 
 

Abstract


Remanufacturing is one of the most effective strategies to achieve sustainable manufacturing and restore the performance of end-of-life products. However, the lack of an effective cleaning method to clean carbonaceous deposits severely hampers the remanufacturing of end-of-life engines. To explore an appropriate cleaning method, it is necessary to first study the characterization of the carbonaceous deposits. A broad range of analyses including X-ray fluorescence spectrometry, thermogravimetric analysis, 1H-nuclear magnetic resonance study, X-ray diffraction analysis, and scanning electron microscopy were performed to conduct an in-depth characterization of the carbonaceous deposits. The results showed that a hybrid structure composed of organics and inorganics is the most distinguishing feature of the carbonaceous deposit in end-of-life engines. The inorganics form the skeleton on which organics get attached, thereby resulting in a strong adhesion of the deposit and increasing the difficulty of cleaning. Therefore, a method in which several cleaning forces can be simultaneously applied is more suitable for the present purpose. Molten salt cleaning was chosen to verify the feasibility of this proposal. This method was shown to have the potential to effectively clean the carbonaceous deposit. This finding could contribute towards promoting the effective remanufacturing of end-of-life engines.

Volume 13
Pages 950
DOI 10.3390/SU13020950
Language English
Journal Sustainability

Full Text