Sustainability | 2021

Life-Cycle-Based Greenhouse Gas, Energy, and Economic Analysis of Municipal Solid Waste Management Using System Dynamics Model



Sustainable municipal solid waste (MSW) management is a critical issue that requires planning in accordance with population growth, urbanization, and living standards. An evaluation that integrates system dynamics (SD) is newly built for identifying the interactions between social activities to predict future MSW generation. In this study, SD-based greenhouse gas (GHG), energy, and economic evaluations were conducted for MSW management in the Southern Tai Lake Watershed (STWL) area in China. The considered SD factors include the gross domestic product (GDP) growth, total population, population growth, MSW generation per capita, and MSW generation charges. The results indicate that the current MSW strategy (S1) does not perform well in GHG, energy, and cost evaluation, and the current landfill capacity will be depleted in 2022. Co-processing the landfilled waste with fresh MSW in incineration plants (S7) is the most favorable strategy, which indicates the current landfill capacity will be sufficient for the ash generated from incineration over the next decade. S7 also emits 1.5–3 times less GHG, recovers 2–3.2 times more energy, and obtains 1.3–2.0 times more economic benefits than S1 during 2020–2030. This study offers valuable insights regarding the dynamics of MSW generation and an approach to determine an optimal MSW management strategy for the future.

Volume 13
Pages 1641
DOI 10.3390/SU13041641
Language English
Journal Sustainability

Full Text