Sustainability | 2021

Relationship between Water Surface Area of Qingtu Lake and Ecological Water Delivery: A Case Study in Northwest China

 
 
 
 

Abstract


Qingtu Lake is located between Tengger Desert and Badain Jilin Desert, Gansu Province, Northwest China. It is the terminal lake of Shiyang River. In recent years, Qingtu lake has maintained a certain area of water surface and vegetation by artificial water conveyance. It is of great significance in preventing the convergence of the two deserts and restraining the trend of ecological deterioration of Shiyang River Basin. The relationship between the water surface area and the ecological water conveyance have not been thoroughly investigated. This study analyzed the spatial and temporal distribution of water surface area of Qingtu Lake and surrounding reeds by interpreting remote sensing data; the change of water surface area under the influence of meteorological factors and water conveyance by linear regression; the water conveyance to maintain current water surface area by water balance method, as well as the reasonable ecological water delivery in high flow year, normal flow year and low flow year by the means of analyzing the upstream inflow and water consumption in Minqin Basin. The results showed that there is a significant correlation between the water surface area of Qingtu Lake, evaporation and ecological water conveyance, and the minimum and maximum water surface areas generally appear before and after water delivery, indicating that the ecological water delivery and evaporation are the two main factors affecting the water surface area change of Qingtu Lake. The result calculated by linear regression indicated that the ecological water delivery volume to maintain current water surface area of Qingtu Lake is 3.146 × 107 m3/yr, while the value was 3.136 × 107 m3/yr calculated by water balance method. These two results are similar and can be verified with each other. Reasonable ecological water conveyance of Qingtu Lake in high flow year, normal flow year and low flow years were 4 × 107 m3/yr, 3.2 × 107 m3/yr and 2.3 × 107 m3/yr, respectively.

Volume 13
Pages 4684
DOI 10.3390/SU13094684
Language English
Journal Sustainability

Full Text