Water | 2019

Response of Landscape and Ecological Characteristics to the Optimal Rainwater Harvesting Dual-Element Mulch Covered Soil Model in Beijing

 
 
 
 
 
 
 
 

Abstract


The implementation of energy conservation and emissions reduction in Beijing prompted yearly increases in the area of urban green space, leading to direct increases in urban water consumption. This aggravated an already tense situation of water shortage. Considering the low irrigation water utilization effectives of the urban green space system, the typical urban greening shrub (Ligustrum vicaryi) was selected as the research object of this study. In a pot experiment, three mulch materials were selected: gravel (CH1), pine needles + gravel (CH2), and bark + gravel (CH3). These materials were set to a uniform thickness of 3 cm, and soil water was maintained between 75% and 85% of the field capacity. Using the analytic hierarchy process and fuzzy mathematics model, the physiological and ecological response characteristics of Ligustrum vicaryi were investigated under different combinations of mulch material. The results for various processing, regarding plant growth, showed CH3 > CH2 > CH1 > CK (Control Check). The leaf area, total leaf area, and leaf area index of CH3 were, respectively, 21.4%, 21.9%, and 62.5% larger than those of the control check (CK). Regarding physiological characteristics, photosynthetic rate, evaporation rate, stomatal conductance, and water use efficiency of CH3 were better than for the other treatments. Regarding ecological services, carbon fixation, oxygen release, cooling, and quantity of humidification of CH3 were optimal. Considered comprehensively for the landscape function, physical characteristics, and ecological services of Ligustrum vicaryi, the preliminary thought is that bark and gravel dual-element mulch, with a layer thickness of 3 cm, was the optimal soil cover treatment for the typical city greening shrub Ligustrum vicaryi. Using the analytic hierarchy process (AHP) and the fuzzy mathematical model for the evaluation of the effects of different soil cover treatments on the landscape function, ecological service function, and physiological characteristics of Ligustrum vicaryi was reliable and feasible. The model evaluation results match the actual ones.

Volume 11
Pages 654
DOI 10.3390/W11040654
Language English
Journal Water

Full Text