Water | 2021

Enhanced Adsorptive Removal of Dyes Using Mandarin Peel Biochars via Chemical Activation with NH4Cl and ZnCl2

 
 
 
 

Abstract


This study examined differences in the adsorption kinetics, isotherms, and thermodynamics of the dyes (methyl orange and fast green FCF) by pristine (M–biochar) and chemical activated mandarin peel biochars (MN–biochar and MZ–biochar). The specific surface area (1085.0 m2/g) and pore volume (0.194 cm3/g) of MZ-biochar much higher than those of the M–biochar (specific surface area = 8.5 m2/g, pore volume = 0.016 cm3/g) and MN–biochar (specific surface area = 181.1 m2/g, pore volume = 0.031 cm3/g). The equilibrium adsorption capacities (mg/g) of MO and FG using M–biochar (MO = 0.95, FG = 0.78) MN–biochar (MO = 2.52, FG = 2.13), and MZ–biochar (MO = 16.27, FG = 12.44) have well-matched the pseudo-second-order model (R2 ≥ 0.952) compared with the pseudo-first-order model (R2 ≥ 0.008). Furthermore, the better explanation of the adsorption behavior of dyes by the Freundlich isotherm model (R2 ≥ 0.978) than the Langmuir isotherm model (R2 ≥ 0.881) supports the assumption that the multilayer adsorption governed the adsorption of dyes using mandarin peel biochars. The adsorptions of dyes were significantly dependent on the solution pH and temperature since the electrostatic and spontaneous endothermic reactions governed their removal using the pristine and chemical activated mandarin peel biochars.

Volume 13
Pages 1495
DOI 10.3390/W13111495
Language English
Journal Water

Full Text