Animals : an Open Access Journal from MDPI | 2019

Dietary Supplementation with Chitosan Oligosaccharides Alleviates Oxidative Stress in Rats Challenged with Hydrogen Peroxide

 
 
 
 

Abstract


Simple Summary Oxidative stress adversely affects animal health and performance. Feed additives with antioxidant abilities supplementation can alleviate oxidative stress. The aim of this study was to evaluate the hypothesis that dietary supplementation with COS alleviates the damage caused by oxidative stress in Sprague Dawley rats challenged with hydrogen peroxide (H2O2). The results shown that COS exhibited better radical scavenging capacity of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion (O2−), H2O2, and ferric ion reducing antioxidant power (FRAP) than butylated hydroxy anisole (BHA), increasing activity of SOD, CAT, GSH-Px, GSH, and T-AOC, as well as decreasing MDA level in serum, liver, spleen, and kidney. Our results indicated that COS can protect Sprague Dawley rats from H2O2 challenge by reducing lipid peroxidation and restoring antioxidant capacity. Abstract Oxidative stress is induced by excessive oxidative radicals, which directly react with biomolecules, and damage lipids, proteins and DNA, leading to cell or organ injury. Supplementation of antioxidants to animals can be an effective way to modulate the antioxidant system. Chitosan oligosaccharides (COS) are the degraded products of chitosan or chitin, which has strong antioxidant, anti-inflammatory, and immune-enhancing competency. Therefore, the current study was conducted to evaluate the hypothesis that dietary supplementation with COS alleviates the damage caused by oxidative stress in Sprague Dawley rats challenged with hydrogen peroxide (H2O2). The rats were randomly divided into three groups: CON, control group, in which rats were fed a basal diet with normal drinking water; AS, H2O2 group, in which rats were fed the basal diet and 0.1% H2O2 in the drinking water; ASC, AS + COS group, in which rats were fed the basal diet with 200 mg/kg COS, and with 0.1% H2O2 in the drinking water. In vitro, COS exhibited better radical scavenging capacity of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion (O2−), H2O2, and ferric ion reducing antioxidant power (FRAP) than butylated hydroxy anisole (BHA). In vivo, dietary supplementation with COS alleviated the H2O2-induced oxidative damage, evidenced by comparatively increasing activity of SOD, CAT, GSH-Px, GSH, and T-AOC, and comparatively decreasing level of MDA in serum, liver, spleen, and kidney. COS also comparatively alleviated the H2O2-induced inflammation. In conclusion, COS supplementation reduced lipid peroxidation and restored antioxidant capacity in Sprague Dawley rats, which were challenged with H2O2.

Volume 10
Pages None
DOI 10.3390/ani10010055
Language English
Journal Animals : an Open Access Journal from MDPI

Full Text