Animals : an Open Access Journal from MDPI | 2021

Is Harbor Porpoise (Phocoena phocoena) Exhaled Breath Sampling Suitable for Hormonal Assessments?

 
 
 
 
 
 
 

Abstract


Simple Summary The progress of animal welfare in wildlife conservation and research calls for more non-invasive sampling techniques. In cetaceans, exhaled breath condensate (blow)—a mixture of cells, mucus and fluids expelled through the force of a whale’s exhale—is a unique sampling matrix for hormones, bacteria and genetic material, among others. Especially the detection of steroid hormones, such as cortisol, is being investigated as stress indicators in several species. As the only native cetacean in Germany, harbor porpoises (Phocoena phocoena) are of special conservation concern and research interest. So far, strandings and live captures have been the only method to obtain samples from free-ranging individuals, and novel, non-invasive monitoring methods are desirable for this small cetacean species. Hence, three different blow collection devices were tested on harbor porpoises. All samples were analyzed for cortisol using a commercially available immunosorbent assay. The most suitable protocol for sampling, storage and processing is using a sterile 50 mL centrifuge tube. This pilot study shows that cortisol can be detected in the exhale of harbor porpoises, thus paving the way for future studies and most likely successful non-invasive small cetacean health monitoring through blow. Abstract Over the last decades, exhaled breath sampling has been established for laboratory analysis in various cetacean species. Due to their small size, the usability of respiratory vapor for hormone assessments was questionable in harbor porpoises (Phocoena phocoena). This pilot study compared three different blow collection devices for their suitability in the field and during laboratory processing: a sterile petri dish covered by a Nitex membrane, as well as sterile 50 mL centrifuge tubes with or without manganese(II) chloride as a stabilizer. Collected exhales varied between three, five or ten, depending on feasibility. Hormones were extracted through an ether mix, followed by centrifugal evaporation and cortisol analysis using an immunoassay. Although close to the lower end of the assay’s dynamic range, the ELISA produced results (n = 110, 0.102–0.937 ng/mL). Hence, a simple 50 mL centrifuge tube was determined as the best suited blow collection device, while three consecutive exhales proved sufficient to yield results. These findings are promising regarding the suitability of exhaled breath as a matrix for future endocrine and immune system-related studies in harbor porpoises. If further advanced, blow sampling can become an important, non-invasive tool for studying and monitoring health, stress levels and diseases in harbor porpoises.

Volume 11
Pages None
DOI 10.3390/ani11030907
Language English
Journal Animals : an Open Access Journal from MDPI

Full Text