Animals : an Open Access Journal from MDPI | 2021

Effect of Different Kefir Source on Fermentation, Aerobic Stability, and Microbial Community of Alfalfa Silage

 
 
 
 
 

Abstract


Simple Summary Minimizing silage additives cost while increasing silage quality is important for a sustainable livestock enterprise, especially in undeveloped and developing countries. In this study, therefore, commercially available kefir yeast (CK) and homemade kefir culture (HK), as a low-cost additive, was applied at untreated a common control (CON) and three different application doses (5.0, 5.7, and 6.0 log cfu g−1) on wilted alfalfa and evaluated with the fermentation characteristics and aerobic stability. The addition of HK with an application dose greater than 5.0 log cfu g−1 prevents mold formation and inhibits yeast counts in silages. Indeed, both CK and HK improve the silage quality and aerobic stability of alfalfa even with low water-soluble carbohydrate content. Abstract The present study has been one of the first attempts to thoroughly examine the effects of different kefir sources on fermentation characteristics, aerobic stability, and microbial communities of alfalfa silages. The effects of commercial kefir (CK) and homemade kefir culture (HK) applied with untreated a common control (CON) and three different application doses (5.0, 5.7, and 6.0 log cfu g−1) on wilted alfalfa and stored at an ambient temperature of 25–30 °C are studied. After 45 days of ensiling, fermentation characteristics and aerobic stability of silages were measured, and bacterial diversity was investigated by 16S ribosomal RNA gene sequencing using the GenomeLab™ GeXP platform. Both CK and HK accelerate more lactic acid production and reduced ammonia nitrogen concentration. Factor analysis of kefir sources suggests that the addition of kefir improves the aerobic stability of silages, even the initial water-soluble carbohydrate (WSC) content is inadequate via its antimicrobial effect on yeast and mold formation. Enterococcus faecium, Pediococcus pentosaceous and Lactobacillus brevis were dominant bacterial species among the treated groups at silo opening, while Lactobacillus plantarum and Lactobacillus brevis became dominant bacterial species after 7 days of aerobic exposure. In conclusion, the application of kefir on alfalfa silages improves fermentation quality and aerobic stability even with low WSC content.

Volume 11
Pages None
DOI 10.3390/ani11072096
Language English
Journal Animals : an Open Access Journal from MDPI

Full Text