Animals : an Open Access Journal from MDPI | 2021

Effect of Tea Tree Oil on the Expression of Genes Involved in the Innate Immune System in Goat Rumen Epithelial Cells

 
 
 
 
 

Abstract


Simple Summary Subacute rumen acidosis (SARA) often causes significant losses on commercial farms. SARA is mainly caused by endotoxin (LPS) produced by the lysis of Gram-negative bacteria, which causes an inflammatory response. To alleviate the inflammatory response mediated by LPS, it is important to improve animal production performance. Tea tree oil (TTO) is a plant extract that possesses good bactericidal and anti-inflammatory effects. According to this study, LPS can significantly induce inflammatory responses in goat rumen epithelial cells (GRECs), while the addition of TTO could markedly mitigate inflammatory responses mediated by LPS in GRECs. Therefore, it may be useful for the treatment of SARA. Abstract In subacute rumen acidosis (SARA), the rumen epithelium is frequently attacked by endotoxin (LPS), which is caused by the lysis of dead Gram-negative bacteria. However, the rumen epithelium innate immune system can actively respond to the infection. Previous studies have demonstrated that tea tree oil (TTO) has good bactericidal and anti-inflammatory effects. Therefore, the aim of this study was to investigate the effect of TTO on the expression of genes involved in the inflammatory cytokines in goat rumen epithelial cells (GRECs) triggered by LPS. Our study shows that rumen epithelial cells isolated from goat rumen tissue can be cultured in vitro in 0.25% trypsin for a long time. These cells were identified as epithelial cells by the expression of cytokeratin 18, monocarboxylate transporter 4 (MCT4), Na[+]/H[+] hydrogen exchanger 1 (NHE1), putative anion transporter 1 (PAT1), vH+ ATPase B subunit (vH+ ATPase), and anion exchanger 2 (AE2). The mRNA expression of IL-1β, IL-6, TNF-α, TLR-2, NF-κB, CXCL6 and CXCL8 genes was significantly increased when LPS was used compared to untreated controls. In addition, mRNA expression of IL-1β, IL-6, TNF-α, TLR-2, NF-κB, CXCL8, CXCL6 and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) genes was also significantly higher in the LPS group compared to the 0.05% TTO group. However, the expression of IL-1β, IL-6, TNF-α, TLR-2, CXCL6 and IFIT3 genes was significantly lower in the LPS and 0.05% TTO group compared to the 1 μg/mL LPS group. These results suggest that TTO can inhibit LPS-induced inflammatory cytokines expression in GRECs.

Volume 11
Pages None
DOI 10.3390/ani11082460
Language English
Journal Animals : an Open Access Journal from MDPI

Full Text