Animals : an Open Access Journal from MDPI | 2021

Effect of High Sulfur Diet on Rumen Fermentation, Microflora, and Epithelial Barrier Function in Steers

 
 
 
 

Abstract


Simple Summary Effect of high sulfur diet on digestion and morphology of the ruminant gastrointestinal tract was investigated both in vitro and in vivo. The results showed that, though sulfur level had little effect on rumen fermentation and most of the rumen microbials, sulfate-reducing bacteria (SRB) pop-ulation and sulfur metabolism had been changed, which led to inhibit methane emission. How-ever, high sulfur in the diet could increase risk of inflammation of rumen epithelium. Abstract These experiments were conducted to evaluate the effect of excessive sulfur on rumen fermentation, microflora, and epithelial barrier function in steers through in vitro gas production and animal feeding experiments. Nine and four levels of sulfur addition were evaluated in in vitro ruminal fermentation and animal feeding experiment, respectively. The results showed that increasing the level of sulfur in substrates decreased the total gas and methane production linearly, while increasing the production of hydrogen sulfide gas (p < 0.01). Volatile fatty acid concentrations, especially that of butyric acid, were increased by extra sulfur (p < 0.01). Sulfur content in the diet had no significant effect (p > 0.05) on most of the rumen microbes, except for Desulfovibrio, one of the major sulfate-reducing bacteria (SRB) in the rumen, whose population increased by adding extra sulfur (p < 0.001). The changes in the morphology of rumen epithelium and thickening of the total epithelial layer were mainly attributed to the increase in the acanthosis cell layer and stratum basale (p < 0.05). Further, the relative expressions of two tight junction protein regulating genes, CLDN-1 and TJP1, were reduced (p < 0.05). Excessive sulfur in the diet can change the type of rumen fermentation, sulfate metabolism and SRB population, and the rumen epithelial barrier function. The results of this study demonstrated that sulfur can be used as a methane inhibitor with the mechanism that SRB competitively used protons to produce hydrogen sulfide. However, a higher level of sulfur in the diet could increase the inflammatory reaction of the rumen epithelium which may affect nutrient absorption.

Volume 11
Pages None
DOI 10.3390/ani11092545
Language English
Journal Animals : an Open Access Journal from MDPI

Full Text