Applied Sciences | 2021

Formulation, Validation, and Application of a Novel 3D BEM Tool for Vertical Axis Wind Turbines of General Shape and Size

 
 
 

Abstract


Low order models based on the Blade Element Momentum (BEM) theory exhibit modeling issues in the performance prediction of Vertical Axis Wind Turbines (VAWT) compared to Computational Fluid Dynamics, despite the widespread engineering practice of such methods. The present study shows that the capability of BEM codes applied to VAWTs can be greatly improved by implementing a novel three-dimensional set of high-order corrections and demonstrates this by comparing the BEM predictions against wind-tunnel experiments conducted on three small-scale VAWT models featuring different rotor design (H-shaped and Troposkein), blade profile (NACA0021 and DU-06-W200), and Reynolds number (from 0.8×105 to 2.5×105). Though based on the conventional Double Multiple Stream Tube (DMST) model, the here-presented in-house BEM code incorporates several two-dimensional and three-dimensional corrections including: accurate extended polar data, flow curvature, dynamic stall, a spanwise-distributed formulation of the tip losses, a fully 3D approach in the modeling of rotors featuring general shape (such as but not only, the Troposkein one), and accounting for the passive effects of supporting struts and pole. The detailed comparison with experimental data of the same models, tested in the large-scale wind tunnel of the Politecnico di Milano, suggests the very good predictive capability of the code in terms of power exchange, torque coefficient, and loads, on both time-mean and time-resolved basis. The peculiar formulation of the code allows including in a straightforward way the usual spanwise non-uniformity of the incoming wind and the effects of skew, thus allowing predicting the turbine operation in a realistic open-field in presence of the environmental boundary layer. A systematic study on the operation of VAWTs in multiple environments, such as in coastal regions or off-shore, and highlighting the sensitivity of VAWT performance to blade profile selection, rotor shape and size, wind shear, and rotor tilt concludes the paper.

Volume None
Pages None
DOI 10.3390/app11135874
Language English
Journal Applied Sciences

Full Text