Applied Sciences | 2021

Effect of Surface Micro-Hardness Change in Multistep Machining on Friction and Wear Characteristics of Titanium Alloy

 
 

Abstract


The machined surface quality, especially the micro-hardness of machined surface layers, is strongly correlated to the friction and wear characteristics of titanium alloy engineering parts. Therefore, to explore relationship of the local surface micro-hardness change in multistep machining and the surface wear resistance of the machined parts is urgently necessary. The machined surfaces were acquired through two-step (roughing and finishing) and three step (roughing, semi-finishing, and finishing) cylindrical turning experiments. The dry friction and wear tests were carried out by UMT-2 friction and wear tester on the multistep final machined surface along the feed direction. The surface wear microtopography and subsurface microstructure were observed and analyzed by scanning electron microscope. The micro-hardness variation in the local area of the finishing surface will cause the extension of unstable friction time stage while withstanding the cyclic and alternating contact stresses, and the soft–hard alternating area should be the sources of friction and wear defects, for instance cracks, peeling pits, fracture striations and even the wear fracture zone to crack propagation and peeling off. This will be of great significance to accurately control the machined surface quality and adaptively improve the surface wear resistance of titanium alloy components.

Volume None
Pages None
DOI 10.3390/app11167471
Language English
Journal Applied Sciences

Full Text