Applied Sciences | 2021

Experimental Investigation of the Static and Dynamic Compression Characteristics of Limestone Based on Its Initial Damage

 
 
 
 
 
 

Abstract


In the current work a new equation for initial damage assessment of limestone based on plane strain theory is proposed. Detailed investigations of the static and dynamic characteristics of limestone with different initial damage degree, using longitudinal wave speed, and static-dynamic compression tests are performed. This study investigated the static and dynamic characteristics of limestone with different initial damage degree, using longitudinal wave speed, and static-dynamic compression tests. Experimental results show that the degree of initial damage decreases with increasing longitudinal wave speed, which reaches the minimum when the longitudinal wave speed is approximately 6000 m/s, and the smaller the longitudinal wave velocity, the greater the degree of initial damage. The static and dynamic compressive strengths of limestone increase with the longitudinal wave velocity and strain rate, but the elastic modulus and Poisson’s ratio do not change significantly. Finally, based on the experimental results, the definitions of damage threshold value and strain softening are proposed, which further verify the influence of strain rate and initial damage on rock compression characteristics. The present study sheds light on the importance of initial damage for the mechanical state of rock in underground engineering.

Volume None
Pages None
DOI 10.3390/app11167643
Language English
Journal Applied Sciences

Full Text