Applied Sciences | 2021

A Real-Time BLE/PDR Integrated System by Using an Improved Robust Filter for Indoor Position

 
 
 
 
 

Abstract


Indoor position technologies have attracted the attention of many researchers. To provide a real-time indoor position system with high precision and stability is necessary under many circumstances. In a real-time position scenario, gross errors of the Bluetooth low energy (BLE) fingerprint method are more easily occurring and the heading angle of the pedestrian will drift without acceleration and magnetic field compensation. A real-time BLE/pedestrian dead-reckoning (PDR) integrated system by using an improved robust filter has been proposed. In the PDR method, the improved Mahony complementary filter based on the pedestrian motion states is adopted to estimate the heading angle reducing the drift error. Then, an improved robust filter is utilized to detect and restrain the gross error of the BLE fingerprint method. The robust filter detected the gross error at different granularity by constructing a robust vector changing the observation covariance matrix of the extended Kalman filter (EKF) adaptively when the application is running. Several experiments are conducted in the true position scenario. The mean position accuracy obtained by the proposed method in the experiment is 0.844 m and RMSE is 0.74 m. Compared with the classic EKF, these two values are increased by 38% and 18%, respectively. The results show that the improved filter can avoid the gross error in the BLE method and provide high precision and scalability in indoor position service.

Volume None
Pages None
DOI 10.3390/app11178170
Language English
Journal Applied Sciences

Full Text